PD-96914

International **IGR** Rectifier RADIATION HARDENED POWER MOSFET SURFACE MOUNT (TO-254AA Tabless)

IRHMJ7250 200V, N-CHANNEL RAD Hard[™]HEXFET[®] TECHNOLOGY

Product Summary

Part Number	Radiation Level	RDS(on)	lD
IRHMJ7250	100K Rads (Si)	0.10Ω	26A
IRHMJ3250	300K Rads (Si)	0.10Ω	26A
IRHMJ4250	600K Rads (Si)	0.10Ω	26A
IRHMJ8250	1000K Rads (Si)	0.10Ω	26A

International Rectifier's RADHard HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Pre-Irradiation

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Eyelets
- Light Weight

Parameter Units ID @ VGS = 12V, TC = 25°C Continuous Drain Current 26 ID @ VGS = 12V, TC = 100°C Continuous Drain Current А 16 Pulsed Drain Current ① 104 IDM PD @ TC = 25°C Max. Power Dissipation 150 W Linear Derating Factor 1.2 W/°C Gate-to-Source Voltage V VGS ±20 Single Pulse Avalanche Energy 2 500 mJ EAS Avalanche Current ① 26 IAR А Repetitive Avalanche Energy ① 15 mJ EAR dv/dt Peak Diode Recovery dv/dt 3 5.0 V/ns ТJ Operating Junction -55 to 150 TSTG Storage Temperature Range °C Pckg. Mounting Surface Temp. 300 (for 5s) Weight 8.0 (Typical) g

Absolute Maximum Ratings

For footnotes refer to the last page

Pre-Irradiation

	Parameter	Min	Тур	Мах	Units	Test Conditions		
BVDSS	Drain-to-Source Breakdown Voltage	200	—	—	V	VGS =0 V, ID = 1.0mA		
∆BV _{DSS} /∆TJ	Temperature Coefficient of Breakdown Voltage	_	0.27	_	V/°C	Reference to 25°C, ID = 1.0mA		
RDS(on)	Static Drain-to-Source	_	—	0.10		V _{GS} = 12V, I _D = 16A		
	On-State Resistance	—	—	0.11	Ω	$V_{GS} = 12V, I_D = 26A$ (4)		
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 mA$		
9fs	Forward Transconductance	8.0	—	—	S (ʊ)	V _{DS} > 15V, I _{DS} = 16A ④		
IDSS	Zero Gate Voltage Drain Current	—	—	25	μA	VDS= 160V,VGS=0V		
		—	—	250	μΑ	V _{DS} = 160V		
						VGS = 0V, TJ = 125°C		
IGSS	Gate-to-Source Leakage Forward	—	—	100	~ ^	$V_{GS} = 20V$		
IGSS	Gate-to-Source Leakage Reverse	—	—	-100	nA	VGS = -20V		
Qg	Total Gate Charge	—	_	170		V _{GS} = 12V, I _D = 26A		
Qgs	Gate-to-Source Charge	—	—	30	nC	VDS = 100V		
Q _{gd}	Gate-to-Drain ('Miller') Charge	—	—	60	1			
^t d(on)	Turn-On Delay Time	_	—	33		$V_{DD} = 100V, I_D = 26A,$		
tr	Rise Time	—	—	140		$V_{GS} = 12V, R_{G} = 2.35\Omega$		
^t d(off)	Turn-Off Delay Time	—	—	140	ns			
tf	Fall Time			140				
LS + LD	Total Inductance	_	6.8	_	nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)		
C _{iss}	Input Capacitance	_	4700	—		$V_{GS} = 0V, V_{DS} = 25V$		
C _{OSS}	Output Capacitance	—	850	—	pF	f = 1.0MHz		
C _{rss}	Reverse Transfer Capacitance	—	210	—				

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)			—	26	^	
ISM	Pulse Source Current (Body Diode) ①			—	104	A	
VSD	Diode Forward Voltage			—	1.4	V	$T_j = 25^{\circ}C$, $I_S = 26A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time				820	nS	Tj = 25°C, IF = 26A, di/dt ≤100A/μs
QRR	Reverse Recovery Charge			—	12	μC	$V_{DD} \le 25V @$
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Мах	Units	Test Conditions
RthJC	Junction-to-Case	—	—	0.83	°C/W	
RthCS	Case-to-sink	—	0.21	_	0/00	
R _{thJA}	Junction-to-Ambient	—	—	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier website.

For footnotes refer to the last page

Radiation Characteristics

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

	Parameter	Lin to 600	K Pade (Si) ¹	1000K E	Pade (Si) ²	Units	Test Conditions	
	Falameter					Units	rest conditions	
		Min	Max	Min	Max			
BV _{DSS}	Drain-to-Source Breakdown Voltage	200	_	200		V	$V_{GS} = 0V, I_D = 1.0mA$	
VGS(th)	Gate Threshold Voltage ④	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$	
IGSS	Gate-to-Source Leakage Forward	—	100	—	100	nA	V _{GS} = 20V	
IGSS	Gate-to-Source Leakage Reverse	—	-100	—	-100		V _{GS} = -20 V	
IDSS	Zero Gate Voltage Drain Current	—	25	—	50	μA	V _{DS} =160V, V _{GS} =0V	
R _{DS(on)}	Static Drain-to-Source ④	—	0.094	—	0.149	Ω	VGS = 12V, I _D =16A	
	On-State Resistance (TO-3)							
R _{DS(on)}	Static Drain-to-Source ④		0.10	_	0.155	Ω	VGS = 12V, I _D =16A	
. ,	On-State Resistance (TO-254AA)							
V _{SD}	Diode Forward Voltage ④	—	1.4	—	1.4	V	$V_{GS} = 0V, I_{S} = 26A$	

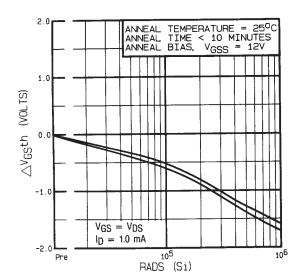
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 66

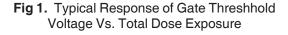
1. Part numbers IRHMJ7250, IRHMJ3250 and IRHMJ4250

2. Part number IRHMJ8250

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Ope	rating Area
---------------------------------------	-------------


lon	LET	Energy	Range	VDS(V)							
	MeV/(mg/cm ²))	(MeV)	(µm)	@VGS=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V			
Cu	28	285	43	190	180	170	125	_			
Br	36.8	305	39	100	100	100	50				



For footnotes refer to the last page

Post-Irradiation

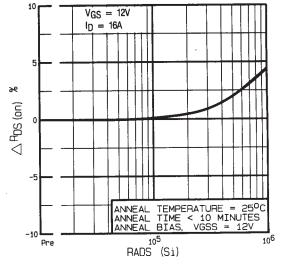


Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure

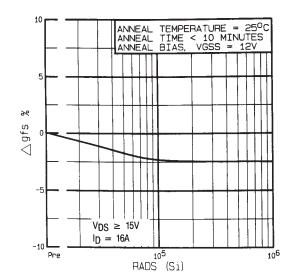


Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

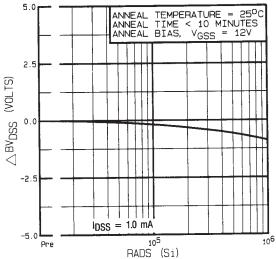
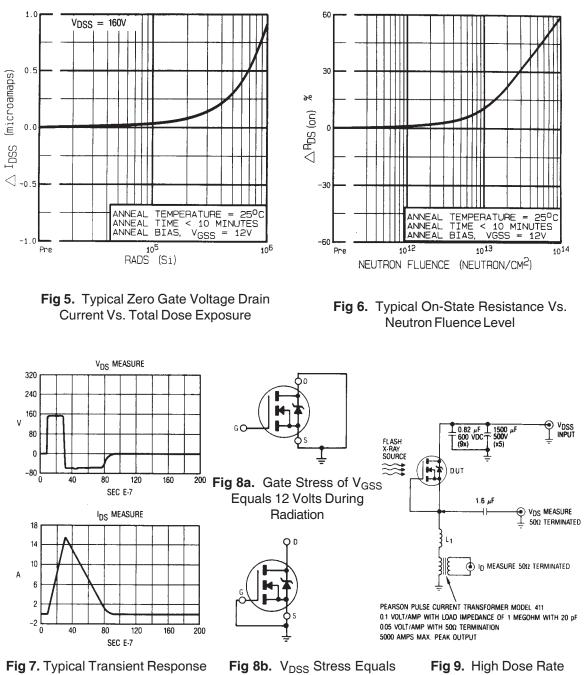



Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

Post-Irradiation

IRHMJ7250

of Rad Hard HEXFET During 1x10¹² Rad (Si)/Sec Exposure 80% of B_{VDSS} During Radiation

(Gamma Dot) Test Circuit

Radiation Characteristics

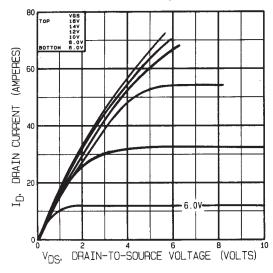


Fig 10. Typical Output Characteristics Pre-Irradiation

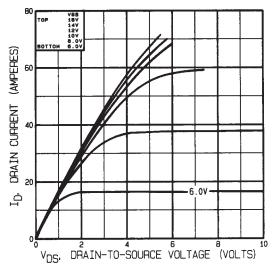


Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

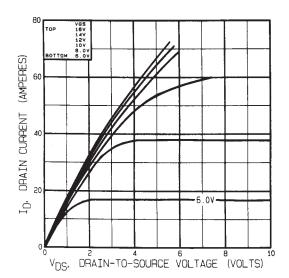


Fig 12. Typical Output Characteristics Post-Irradiation 300K Rads (Si)

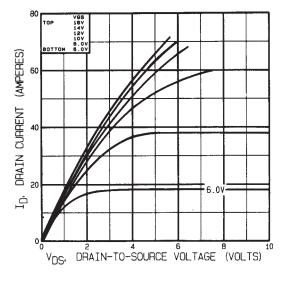


Fig 13. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

www.irf.com

Note: Bias Conditions during radiation: $V_{GS} = 12$ Vdc, $V_{DS} = 0$ Vdc

Radiation Characteristics

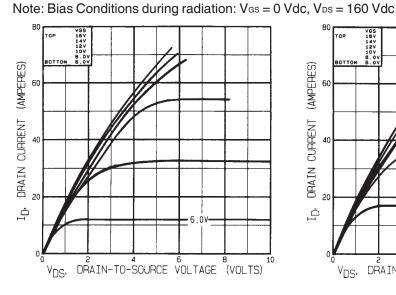


Fig 14. Typical Output Characteristics Pre-Irradiation

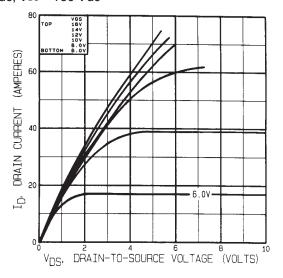


Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

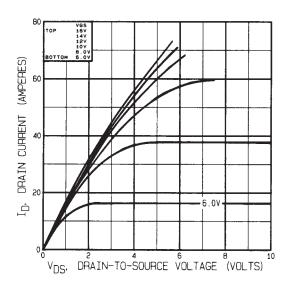


Fig 16. Typical Output Characteristics Post-Irradiation 300K Rads (Si)

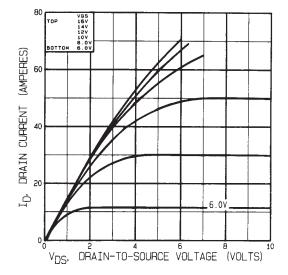


Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

www.irf.com

Pre-Irradiation

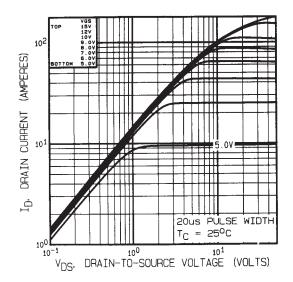


Fig 18. Typical Output Characteristics

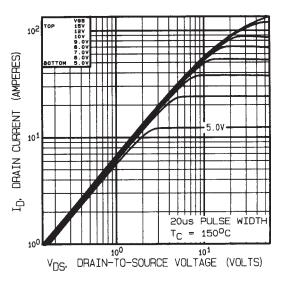


Fig 19. Typical Output Characteristics

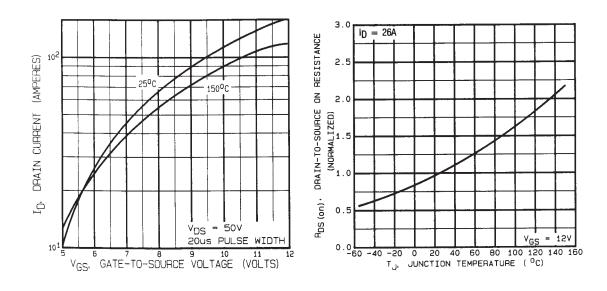
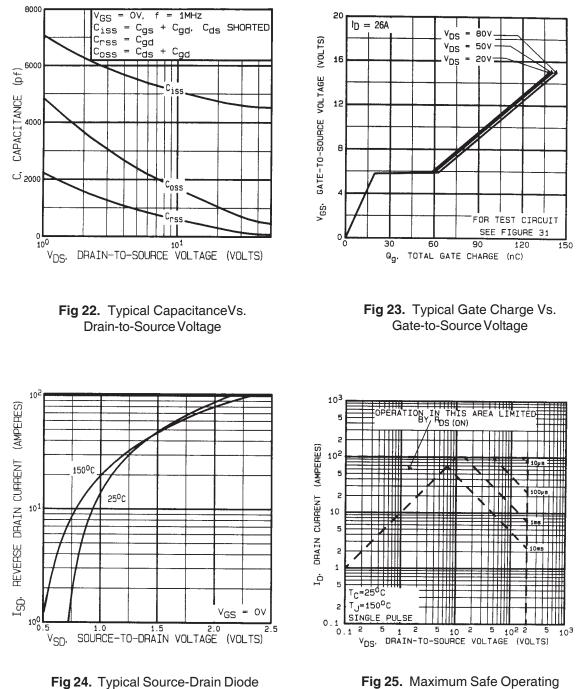
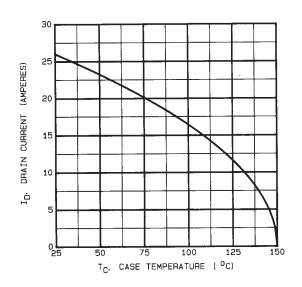
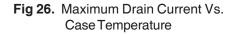



Fig 20. Typical Transfer Characteristics

Pre-Irradiation

IRHMJ7250




Forward Voltage

www.irf.com

Area

Pre-Irradiation

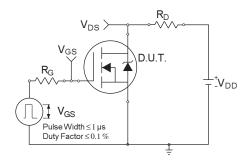


Fig 26a. Switching Time Test Circuit

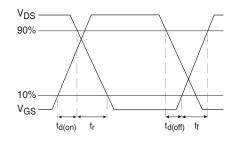
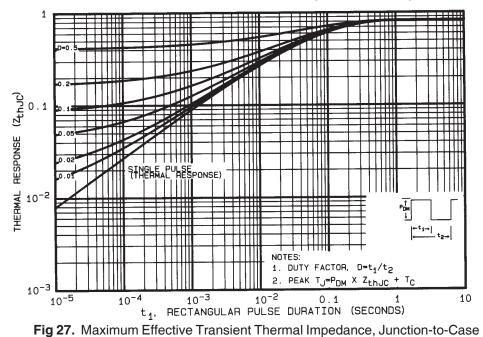



Fig 26b. Switching Time Waveforms

Pre-Irradiation

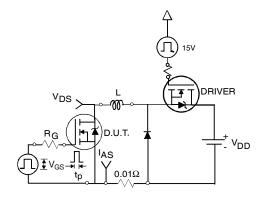


Fig 28a. Unclamped Inductive Test Circuit

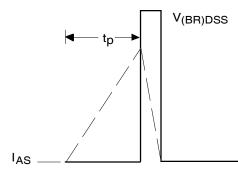


Fig 28b. Unclamped Inductive Waveforms

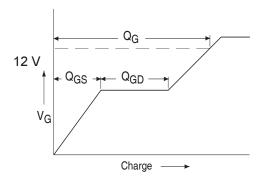


Fig 29a. Basic Gate Charge Waveform

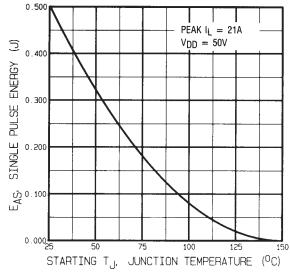
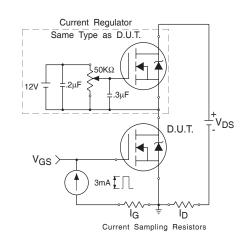
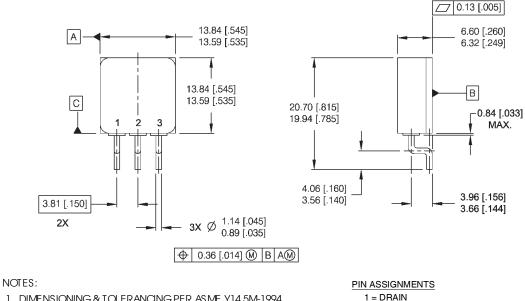



Fig 28c. Maximum Avalanche Energy Vs. Drain Current

Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- \odot V_{DD} = 25V, starting T_J = 25°C, L= 1.5mH Peak IL = 26A, VGS = 12V
- $3 I_{SD} \leq 26A$, di/dt $\leq 190A/\mu s$,
- - $V_{DD} \le 200V, T_J \le 150^{\circ}C$

Pre-Irradiation


④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

2 = SOURCE

3 = GATE

- 5 Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- 6 Total Dose Irradiation with VDS Bias. 160 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-254AA Tabless

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.

2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

3. CONTROLLING DIMENSION: INCH.

4. THIS OUTLINE IS A MODIFIED TO-254AA JEDEC OUTLINE.

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/2004